Tesla v. Edison

Escape if you can.

Agenda

1. Facilitator Introduction (10:25-10:27)
2. Spinner to randomly assign Edison/Tesla to groups (10:28-10:30)
3. Students sent to groups and select a group leader and introduce themselves (10:3110:34)
4. In the main room, students will independently watch the Tesla / Edison tutorial videos (10:35-10:45)
5. Students are sent back to groups and begin the Escape Room challenge. Students solve the challenge problems on the google slide (10:46-11:04)
6. Winning group notifies Mr. Bari and Mr. Bari will immediately dismiss the breakout rooms and announce the winner is the Tesla or Edison of 2021.
7. Winning group presents their slides (11:05-11:10)

Group 2 Leader: lafayette (Javi)

Tesla

Key for Door 1:

$$
\begin{array}{ll}
P=w / t & P=\left(A p v^{\wedge} 3\right) / 2 \\
P=k E / t & P=\left[\left(6358.5 m^{\wedge} 3\right)(1.25)(12)^{\wedge} 3\right] / 2 \\
P=\left(m v^{\wedge} 2\right) / 2 t & P=6867180 \text { watts } \approx 7000000 \text { wats } \\
A=\pi r^{\wedge} 2 & \\
A=\pi(45)^{\wedge} 2 & \\
A=6358.5 \mathrm{~m}^{\wedge} 3 &
\end{array}
$$

Group 2 Leader: lafayette

$$
\begin{aligned}
& \text { Key for Door } 2 \text { : } \\
& P=I V \\
& 200=I(240) \\
& I=200 / 240=0.8333 \\
& I \approx 0.83 \mathrm{~A}
\end{aligned}
$$

Group 3 Leader: Sally Williams

Edison

Key for Door 1:

$$
\begin{aligned}
& \mathrm{V}=12.0 \mathrm{~V} \\
& \mathrm{R}=3.0 \Omega \\
& \mathrm{P}=\mathrm{V}^{\wedge} 2 / \mathrm{R} \\
& \mathrm{I}=\mathrm{V} / \mathrm{R}=12 \mathrm{~V} / 3.0 \Omega=4.0 \mathrm{amp} \\
& \mathrm{P}=4.0 \mathrm{amps} * 12.0 \mathrm{~V}=48 \mathrm{~W}
\end{aligned}
$$

Group 4 Leader: Jing

Tesla

Key for Door 1:7000000
$\mathrm{P}=\mathrm{w} / \mathrm{t}$
$\mathrm{P}=\mathrm{mv}$ ^2/2t
m=AlP
$\mathrm{P}=\mathrm{AlPV}{ }^{\wedge} 2 / 2 \mathrm{t}$ V=l/t
P=APV^3/2
$A=p i r^{\wedge} 2$
$P=1.25$
$\mathrm{v}=12 \mathrm{~m} / \mathrm{s}$
$D=90$
$A=45^{\wedge} 2 \times \mathrm{pi}$
$A=6362$
$\mathrm{P}=(6362)(1.25)(12)^{\wedge} 3 / 2$
$P=6870960$

Group 4 Leader:

Key for Door 2: 400

$$
P p=V p \times I p
$$

P=I_RMS x V_RMS
200=I_RMS x 240
$P p=1.18 \times 338$
$P p=400$
I_RMS= . 833
lp=I_RMS x Root 2
I_p= 1.17803989
V_RMS $=240$
Vp= $240 \times$ Root 2

Group 4 Leader:

Key for Door 3: 14

DC doesn't fluctuate => DC Voltage $=\mathrm{V}_{\text {RMS }}$
AC fluctuates $=>$ AC Voltage $=V_{\text {Peak }}$
$\mathrm{V}_{\text {Peak }}=\mathrm{V}_{\text {RMs }}{ }^{*} \operatorname{rad}(2)$
$V_{\text {Peak }}=(10 \mathrm{~V}) * \operatorname{rad}(2)$
$V_{\text {Peak }}=14 \mathrm{~V}$

Group 5 Leader: Kevin

Key for Door 1: the tutorials are on the website, here
Power = Voltage (Current)
Power = 4 V * (3/6 Amps) = 2 Watts
Bulb 1 = ohms (Resistance)
Ohm's Law
Voltage = Current (Resistance)
Current = Voltage/Resistance
Resistance $=$ Voltage/ Current

Group 5 Leader: Kevin

Key for Door 2:

	Bulb 1	Bulb 2	Bulb 3
Voltage	4 V	4 V	4 V
Current	1.33 A	0.67 A	2 A
Resistance	3 ohms	6 ohms	2 ohms
Power			
Total			

